Média Móvel Circular
Uma das principais aplicações para a placa Arduino é a leitura e registro de dados do sensor. Por exemplo, um monitora a pressão a cada segundo do dia. Como altas taxas de amostragem muitas vezes geram picos nos gráficos, um também quer ter uma média das medidas. Como as medidas não são estáticas no tempo, o que muitas vezes precisamos é uma média em execução. Esta é a média de um determinado período e muito valioso quando se faz análise de tendências. A forma mais simples de uma média em execução pode ser feita por código que se baseia na média anterior: se não quiser usar matemática de ponto flutuante - como isso ocupa memória e diminui a velocidade - pode-se fazer o mesmo completamente no domínio inteiro. A divisão por 256 no código da amostra é um shift-right 8, que é mais rápido do que dizer divisão por e. 100. Isso é verdade para cada poder de 2 como divisor e um só deve cuidar a soma dos pesos é igual à potência de 2. E é claro que se deve cuidar que não haja transbordamento intermediário (considere usar sem assinatura longa) Se você precisar Uma média de corrida mais precisa, in concreto das últimas 10 medidas, você precisa de uma matriz (ou lista vinculada) para mantê-las. Esta matriz funciona como um buffer circular e com cada nova medida, a mais antiga é removida. A média de corrida é calculada como a soma de todos os elementos divididos pelo número de elementos na matriz. O código para a média em execução será algo assim: Desvantagem deste código é que a matriz para manter todos os valores pode se tornar bastante grande. Se você tem uma medida por segundo e quer uma média corrente por minuto, você precisa de uma série de 60, uma média por hora precisaria de uma matriz de 3600. Isso não poderia ser feito dessa maneira em um Arduino, pois ele só possui 2K de RAM. No entanto, ao construir uma média de 2 estágios, pode ser abordado bastante bem (aviso: não para todas as medidas). No código psuedo: Como uma nova matriz estática interna é necessária para cada função runningAverage, isso grita para ser implementado como uma classe. Biblioteca RunningAverage A biblioteca runningAverage faz uma classe da função acima para que ela possa ser usada várias vezes em um esboço. Desacopla a função add () e avg () para ser um pouco mais flexível, e. Pode-se chamar a média várias vezes sem adicionar nada. Observe que todas as instâncias da classe adicionam sua própria matriz para armazenar medidas, e isso aumenta o uso da memória. A interface da classe é mantida tão pequena quanto possível. Nota: com a versão 0.2 os nomes dos métodos são todos mais descritivos. Um pequeno esboço mostra como ele pode ser usado. Um gerador aleatório é usado para imitar um sensor. Na configuração (), o myRA é limpo para que possamos começar a adicionar novos dados. Em loop () primeiro, um número aleatório é gerado e convertido em um flutuador para ser adicionado ao myRA. Em seguida, o runningAverage é impresso na porta serial. Pode-se também exibi-lo em algum LCD ou enviar por ethernet, etc. Quando são adicionados 300 itens, o myRA está limpo para começar de novo. Para usar a biblioteca, faça uma pasta nas suas LISTAS SKETCHBOOKPATH com o nome RunningAverage e coloque o. h e. cpp lá. Opcionalmente, faça um subdiretório de exemplos para colocar o aplicativo de exemplo. 2011-01-30: versão inicial 2011-02-28: destrutor faltando fixo no arquivo. h 2011-02-28: construtor padrão removido 2012--. TrimValue () Yuval Naveh adicionou trimValue (encontrado na web) 2012-11-21: refatorado 2012-12-30: adicionado fillValue () refatorado para publicação 2014-07-03: código de proteção de memória adicionado - se a matriz interna não puder ser alocada tamanho Torna-se 0. Isso é para resolver o problema descrito aqui - forum. arduino. ccindex. phptopic50473.msg1790086msg1790086 - Teste extensivamente. Classe de modelo RunningAverage. h RunningAverage. cpp O cientista e engenheiros Guia de processamento de sinal digital Por Steven W. Smith, Ph. D. Como o nome indica, o filtro de média móvel opera pela média de um número de pontos do sinal de entrada para produzir cada ponto no sinal de saída. Na forma da equação, esta é escrita: onde é o sinal de entrada, é o sinal de saída e M é o número de pontos na média. Por exemplo, em um filtro de média móvel de 5 pontos, o ponto 80 no sinal de saída é dado por: Como alternativa, o grupo de pontos do sinal de entrada pode ser escolhido simetricamente em torno do ponto de saída: Isso corresponde à alteração da soma na Eq . 15-1 de: j 0 a M -1, para: j - (M -1) 2 para (M -1) 2. Por exemplo, em um filtro de média móvel de 10 pontos, o índice, j. Pode correr de 0 a 11 (média de um lado) ou -5 a 5 (média simétrica). A média simétrica requer que M seja um número ímpar. A programação é ligeiramente mais fácil com os pontos em apenas um lado no entanto, isso produz uma mudança relativa entre os sinais de entrada e de saída. Você deve reconhecer que o filtro de média móvel é uma convolução usando um kernel de filtro muito simples. Por exemplo, um filtro de 5 pontos possui o kernel de filtro: 82300, 0, 15, 15, 15, 15, 15, 0, 08230. Ou seja, o filtro médio móvel é uma convolução do sinal de entrada com um impulso retangular com um Área de um. A Tabela 15-1 mostra um programa para implementar o filtro de média móvel. Como diagnóstico, eu quero exibir o número de ciclos por segundo na minha aplicação. (Pense quadros por segundo em um atirador em primeira pessoa.) Mas eu não quero exibir o valor mais recente, ou a média desde o lançamento. O que eu quero calcular é a média dos últimos valores X. Minha pergunta é, suponho, sobre a melhor maneira de armazenar esses valores. Meu primeiro pensamento foi criar uma matriz de tamanho fixo, então cada novo valor seria o mais antigo. Esta é a melhor maneira de fazê-lo Se assim for, como eu iria implementá-lo EDITAR: Heres a classe que eu escrevi: RRQueue. Ele herda a fila, mas impõe a capacidade e descida, se necessário. Pediu 22 de junho às 20:34
Comments
Post a Comment